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ABSTRACT 

Given any 3-dimensional convex polytope P, and any simple circuit C in the 1- 
skeleton of P, there is a convex polytope P'  combinatorially equivalent to P, 
and a direction such that i fP '  is projected orthogonally in this direction, then 
the inverse image of the boundary of the projection is the circuit in P' corres- 
ponding to the circuit C in P. 

1. Introduction. This paper is another investigation of the question of how 

the combinatorial  structure of  a convex 3-dimensional polytope (hereafter to 

be called a 3-polytope) is related to its shape (see [-1, 3, 6, ch. 13]). 

I f  P is a 3-polytope, then by a regular projection of P we mean an orthogonal 

projection of P onto a plane in a direction not parallel to any face of  P .  We shall 

prove the following theorem about  such projections: 

THEOREM 1. I f  S is a simple circuit in the graph of a 3-polytope P,  then 

there is a 3-polytope P' of the same combinatorial type as P,  such that the 

Corresponding circuit in P' is the inverse image of the boundary of some regular 

projection of P' .  

2. Definitions. The graph of a 3-polytope P is the graph formed by the edges 

and vertices of  P .  A graph is said to be 3-polyhedral of  it is isomorphic to the 

graph of some 3-polytope. A theorem of Steinitz [2, 7, 8] states that  a graph 

(without multiple edges) is 3-polyhedral if and only if it is planar and 3-connected. 

Using this fact we may assume that all 3-polyhedral graphs are embedded in 

the plane. I f  G is a graph emvbedded in the plane ~ and R is a connected com- 

ponent  of  rc ,,~ G, bounded by a circuit S of  G, then R U G is called a face of G. 

A facet of a 3-polytope P is a 2-dimensional face of P ,  thus the faces of  the 

graph of P correspond in a natural way to the facets of  P .  
Two 3-polytopes P and Q are combinatorially equivalent if there is a 1-1 

incidence preserving function of  the faces (of all dimensions < 3) of  P onto the 
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faces of  Q. By a theorem of  Gri~nbaum and Motzkin [4, p. 498] two 3-polytopes 

are combinatorially equivalent if and only if their graphs are isomorphic. 

3. Proof  of Theorem 1. Our proof  uses a method of proof  used for Steinitz' 

Theorem [-2, 6, 8].  The idea of the proof  is to take a planar 3-connected graph 

G,  find an edge e of  G such that G ,,~ e is homeomorphic  to some planar 3-con- 

nected graph G' (such an edge will be called a removable edge of G). By induction 

there is a 3-polytope P '  whose graph is G ' .  We add a line segment L across a 

facet F of  P '  so that the graph consisting of G' and L is isomorphic to G. We 

" b e n d "  the face F along L and then adjust, one at a time, the vertices of  P '  and 

the planes determined by the facets of  P '  so that the vertices and facets match up 

as they did in P '  except that F is split into two facets. This creates a polytope P 

whose graph is G. This process 

ting. Of particular importance 

can be done so that each facet 

(see [2] for details). 

will be referred to as splitting F or as facet split- 

to us is the fact that this bending and adjusting 

and vertex is moved an arbitrarily small amount  

The p roof  of  Theorem 1 is by induction on the number  of  edges of  P .  The case 

where there are only six edges in P is easily verified. We consider two cases: 

Case I. S is a circuit of  length 3 and each vertex of  S is joined to a common 

vertex v. 

In this case we choose three planes supporting P on the three edges of  S.  I f  

the three planes do not meet at a point then we may project parallel to three 

planes. I f  they meet at a point p we take a projective transformation of  P which 

sends p to infinity and then the three planes will be taken onto planes which 

have no common point, and again we have a direction in which we may project. 

Case II. S is not as described in Case I. We choose an edge e not on S such 

that G ~ e is homeomorphic  to a planar 3-connected graph G' (Lemma 2 will 

show that this can be done). 

By induction there is a 3-polytope P '  whose graph is G, with a circuit S '  

(corresponding to the circuit S in P) and a regular projection n such that S '  

projects onto the boundary of n(P'). We now choose a line segment L across a 

face F of P ' ,  as in the proof  of  Steinitz' theorem, bend F and adjust planes and 

vertices to obtain a polytope combinatorially equivalent to P .  I f  we make the 

bend and the adjustments small enough then S will still be projected onto the 

boundary of n(P).  To see this choose one point in the relative interior of  each 

edge of P '  that is not on S and also choose such a point on L. We can choose 
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neighborhoods of these points which project onto the interior of ~(P'). If the 

bending and adjustments are small enough then there are neighborhoods of these 

points which will still project into the interior of ~(P) thus the only edges which 

can project onto the boundary are the edges of S. 

We are left with the task of proving that the edge e exists. 

LEMMA 1. Let G be a planar 3-connected graph and let S be a simple circuit 

in G. There is a subgraph H of G, containing S, that is homeomorphic to the 

graph of the tetrahedron. 

PROOF. Let vl be a vertex of S. Since G is 3-connected there is a path F 1 from 

vl to some other vertex vz of S with no other vertices of S on F t .  Let 03 be another 

vertex of S and let F2 be the path from vl to Vz along S, which contains v3. If 

every path from va returns to F 2 before it meets F 1 or S ~ Fz then the graph 

can be disconnected by removing v I and v 2 which contradicts the 3-connectedness 

of G. If we add a path F 3 from v3 to some vertex of F x or S ~ F 3 then we have 

constructed the desired subgraph of G. 

LEMMA. 2. Let G be a planar 3-connected graph that is not the graph of 

the tetrahedron and let S be a simple circuit in G. I f  S is not a circuit of length 

three with each vertex joined to a common vertex then there is a removable 

edge that does not lie on S. 

PROOF. We shall construct a sequence of subgraphs G1, G2, "", G, of G such 

that G1 is homeomorphic to T, the graph of the tetrahedron, each G~ is homeo- 

morphic to some 3-polyhedral graph, and G, is obtained from G,_ 1 by adding 

an edge across a face of G,,_ 1 dividing the face into two faces (such a process 

will be called .face splitting.) 

By Lemma 1 there is a subgraph of G homeomorphic to T containing S. Let 

G~ be such a subgraph with a maximum number of vertices. Proceeding by in- 

duction, suppose we have constructed G~_ ~. In our construction we now consider 

two cases. 

Case I. There exists a 2-valent vertex ol in Gi- 1. Let F1 be the arc (i.e. max- 

imal path in Gi_ 1 with all interior vertices 2-valent in G~_ 1) containing v. From 

at least one 2-valent vertex Vz of F~ there must be a path F2 in G which meets some 

other arc before it meets F1, for otherwise G could be disconnected by removing 

the endpoints of F~. 

We let G~ be the graph obtained from G~_ 1 by adding to G~_ 1 the longest such 

path, F3 from v2. If G~_ t is homeomorphic to a 3-polyhedral graph H then G~ 



Vol. 8, 1970 PROJECTIONS OF 3-POLYTOPES 307 

is homeomorphic to a graph obtained from H by splitting a face. I f  G i = G,, 

the path must be an edge. 

Case II. Gi- t  has no 2-valent vertices. Let v 1 be a vertex of Gi_ 1 which 

meets an edge e of G that is not an edge of G i_i .  Let F 1 be a path beginning 

with e, with the property that only its endpoints meet Gi_l • If  F 1 does not end 

at a vertex v2 where v i and v 2 are endpoints of an edge (note every arc is an edge 

in Case II) then adding F 1 would correspond to a face splitting. I f  it does end 

at such a vertex v 2 then the edge vlv 2 is an edge of  S, for otherwise we could 

replace by2  by F 1 which implies that either we did not add a maximal path at 

some step or we did not choose a maximal subgraph homeomorphic to T. 

I f  vlv2 is an edge of  S we observe that F 1 contains 2-valent vertices because G 

does not contain multiple edges. From one of  these vertices v 3 there must be a 

path F 2 in G which meets G i_l U F I only at the endpoints of F 2 and has only 

one endpoint on F i , for otherwise we could disconnect G be removing the end- 

points of F t . 

Let the other endpoint of  F 2 be v, .  Let F 3 be the path from v 1 to v 3 along F1 

and from v 3 to v, along F 2 . By the above argument, if we cannot add F 3 to G,_ t 

then the edge vlv 3 is an edge of S. 

Let F ,  be the path from v 2 to v 3 along F 1 and from v3 to v, along F 2 . Again, 

either we can add F 4 to G~_ t or v2v 3 is an edge of  S. Thus if we cannot add one 

of these three paths then S is a circuit of length 3. We now add [,3 3 = t F~ to G i_ I • 

We may do this as long as G~ is not G n . But if it were then S would be a circuit 

of length three consisting of the neighbors of v 3 which is a contradiction. 

We now have constructed the sequence G1, ..., Gn and we see that in constructing 

G, we have added an edge that is not on S. 

The search for generalizations to higher dimensions is not very fruitful. The 

following examples show that the two most obvious generalizations to 4-poly- 

topes are not true. 

EXAMPLE 1. In [-4], Griinbaum and Sreedharan show that there exists a 

simplicial 4-polytope P and a subcomplex S of  its boundary complex that is a 

topological 3-cell with the property that for any polytope P' combinatorially 

equivalent to P there is no point in 4-space from which all points of S' (the cor- 

responding subcomplex in P') are visible. This shows that there is no polytope 

P' combinatorially equivalent to P such that the boundary of  S'  projects onto 

the boundary of  n(P') for some projection n. In other words our theorem does 
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not  generalize to subcomplexes of the boundary complexes of 4-polytopes that 

are topological 2-spheres. 

EXAMPLE 2. We show that the theorem does not generalize to circuits in 

4-polytopes by giving an example of a 4-polytope P with a circuit C such that 

no regular projection n of  any polytope combinatorially equivalent to P will 

project the circuit onto the boundary of n(P) .  Let P be the cartesian product  

of  a square and a hexagon. There is a subcomplex S of the boundary complex 

of  P that is topologically a torus, namely, the product of the boundary of the 

square with the boundary of the hexagon. I f  we label the vertices of  the square 

1, 2, 3, 4, and the vertices of the hexagon 1,2, . . . ,6 ,  then we may indicate the 

vertices of  S by pairs of integers. Using this notation we shall describe a circuit C 

on S which is knotted (in the boundary of P) by giving the sequence of vertices of  C: 

(1, 1) (1,2),  (4,2),  (4,3),  (3, 3), (3,4),  (2,4) 

(2,5),  (1,5),  (1,6),  (4,6),  (4,1), (3,1), (3,2) 

(2,2),  (2,3),  (1,3),  (1,4),  (4,4),  (4,5),  (3,5) 

(3,6),  (2,6),  (2,1),  (1,1).  

Since C is knotted it cannot lie in any subcomplex of  P that is topologically a 

2-sphere. Since the inverse image of a boundary of a regular projection of  P 

onto E 3 is a 2-sphere we see that C cannot project onto the boundary of any such 

regular projection. 
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